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Abstract. It is proved that a Riccati differential equation of a particular
form has a unique solution satisfying the conditions that it is to exist for

large values of the independent variable _5_ and to have its graph stay above a
o €
certain line for large _%; It is then proved that the solution exists for all t.
v Tr
Two forms of the solution are developed in terms of the confluent hypergeometric

functions. An application of these results is made to an asymptotic stochastic
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analysis of a noisy duel problem.
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1. Introduction. This paper investigates a particular form (1) in section

- 2 of a Riccati equation that is quadratic in the independent variable t. The
approach to the problem of the existence of a global solution is not from the
usual initial-value standpoint, but is based on a desired feature of the solution
for large _t which is given by properties (i) and (ii) of the Theorem in section
2. The form (1) of the equation makes it easy to draw rough sketches of how the
solutions behave depending on where the initial point is selected. In particular,

it becomes plausible that there exists a solution defined for all _t that

e

satisfies properties (i) and (ii), but it is by no means clear that there is only
one such solution. That this is the case indicates that this distinguished
solution is extremely unstable. Indeed, one of the implications of Lemma 5 in
section 3 is that every other solution diverges from the distinguished solution

as t *> >,

Our investigation is motivated by the approach used in [3] and [6] to

, analyze the equal-accuracy noisy duel problem for two players having finite
unequal units of ammunition. This approach leads to asymptotic distributions !
of normalized times of first fire for the two players. The hazard rates for
these distributions are expressed in terms of a solution to a Riccati equation
of the form (1), and the distributions themselves are expressed in terms of a
solution to a related Hermite equation.

A brief outline of these connections is given in section 4. The reader
may find it helpful to read that section in conjunction with the statement of i

the Theorem to understand the reason for deriving the various properties of the

distinguished solution.

i 2. Statement of the Theorem. The principal conclusions we desire can be
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THEOREM. Suppose o 1is a positive number and ¢1, ¢2 are linear functions

e i it i e okl N

¢i(t) = Eit + Yi» where 82 < Bl and 81 > 0. Then there is exactly one solution

of the Riccati equation

e
() vi(e) = alv(t) - 2¢,(6)]1[v(t) - 2¢,(t)] T
that has the following two properties: There is a number ty Such that
(1) The domain of v includes the interval [to,w);
(11) wv(t) - 2¢1(t) >0 for t z_to.
Moreover, thi: -::lution has the additional properties:
(111) The irmain of v is (-=,%).
Lﬂ???ﬁsion For -
(iv) wv(t) - 2¢,(t) > 0 for all rt. l’g;g GRARI
A8
@) [Tlv(e) - 20,()1de = [Tlv(e) - 20,(0)1de = =, Unanaounceq
Justificatyor C !
1) v(E) - 26,(t) >0 as t >, —
—— — T ——————
, By ;
\ [ — e i
if) v'(t) » 281 as t > o, _P!S_t.f'ibutic-n/ -
1f i addition, 82 < 0, then the following hold: hAfyailability 556e§ﬂh>ﬂ
Avetl andjep U 1
- ii1)  If to is a number, then the conditions Dist . KIEIYRS I
=~ f .
i
v(t) - 26,(t) >0 for t >t 1 ’
2 —_— 0 ; I
L

and v(to) - 2¢2(t0) =0
hold exactly when

¢1(t0) - ¢2(t0) = zo' (81-82);20-9

where zq 1s the real zero of the Weber parabolic cylinder function

Dp+1 with p = Bl/(BZ-BL)'

(1x) With t) as in (viii) and, for 1 = 1,2, we define f (t) = xi(t)5i(t).
X

where 1(t) = afv(t) - 2¢i(t)] and 51(t) - exp(-Lin(T)dT). we have:
0

(ixa) $l(t) < 52(t) when t, <t < -t;-2n and

6](t) > 62(t) m t > ‘to - 271. 1

where t = -n {ig the solution of x,(t) = x,(t).




BN i = 510 e 1l N i pipiidaantiedl . i e ; St Ripfionspun. i
s - S e e e e e e o e L —

i (ixb) fl is decreasing and positive on (—o0,),

(ixc) 52 is positive on (to,m) and has a maximum value that occurs
';’”’”"”'““‘”"‘“‘““““m-ﬁ-_g:p.umhgr £, >-n >t
& (ixd) tf,(t)de < @ T —
(ixe) jt tf, (t)dt = =
0
" : 'n the process of proving this theorem, two forms of the solutions are
L
.+ dev: loped.
p - _8vi(s)
I @ v(e) = 2, (0) - 5 S
where s = 8(ttm), 6 = Ja(BI—BZ), n = (Yl-YZ)/(Bl—BZ),
& and W(s) = ¢ yy(s) +y,(s),
with: r = -2I'(a + 1/2)/T(a), a= 81/2(81-32).
N (s) = s F (a+1/2, 3/2; 8%
Yo 11 g ’ ’ !
2 T
y,(8) = |F (a, 1/25 s7),
and lF1 denotes the confluent hypergeometric function
r() v I(atn) 2"
(Fi@as v 2 =5y L Tebim at -
n=0
D (z)
§v/2 “p+l
‘ (B) v(t) 2¢2(t) +'—;r' D () °’ f
| P '
where z = &/2(tm), p = Bll(Bszl),
! and DP is the Weber parabolic cylinder function (cf. [7]).
! /2 2
D (2) = I'(1/2)2P “exp(-2z IOR (2)
1 2 z/2 2
R (2) = =r—-—oc - : - R - .
with p(7) T(/Z = p/D) 1Fl( p/2, 1/2; 27/2) T -p/2) 1Fl(1/2 p/2, 3/2; 27/2).




? 3. Proof of the Theorem. The demonstration of the conclusions is broken down

into several stages.

LEMMA 1. A function v 1is a solution of equation (1) on an interval I

‘ exactly when

where x(t) # 0 for t in I and is a solution of

Py (3) X"(t) - q(t)x(t) = 0

with a = o (0-0)° + alBy+8))

Proof. We re-write equation (1) in the form
. 2
v'+2Av + Bv -C =0
where A= G(¢1+¢2), B = -a, and C = 4a¢1¢2.

We then apply the result in Reid [5] that v is a solution of (1) on an interval

1 if, and only if, v = u/x, where x(t) #0 on I and the pair (x,u) is 21

a solution on 1 of the linear system }
x' = Ax + Bu !

(4) l
u' = Cx - Au,

But this system is equivalent to equation (3), as can be seen through the connec-
! tion u = (x'-Ax)/B. Calculating v = u/x then gives the form (2).

In order to transform equation (3) into more comprehensible forms, first

we make a change of independent variable.

i LEMMA 2. The general solution of equation (1) is

§ w'(s)
a w(s)

v(t) = ¢, (t) + ¢,(t) -

W vhere s = 8(t+r), & = /al(B<B,),  n= (v,-Y,)/(8;-B)),
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and w is a non-vanishing solution of the Weber equation

(5) W'(s) + (€~s2)w(s) = 0

with € = (g,%8,)/(g,=8) -

While the form (5) is simpler than the form (3), it is not easy to see when

T e e e e e e e e

its solutions are non-vanishing; the equation has an 0SciTiavwisy-interval about

e el

s =0 if € > 0. However, we can make the change of dependent variable
y(s) = EXP(SZ/Z)W(S), which transforms (5) into a Hermite equaticn and clearly
preserves the non-vanishing of solutions. In fact, going through the calculaticns

gives the following result.

LEMMA 3. The general solution gf equation (1) is

(6) v(t) = 26, (t) --% %}éﬁ}

where y is a non-vanishing solution of the Hermite equation

7 y"(s) - 2sy'(s) - 4ay(s) =0
with a = B/2(8)=6y)-

Before continuing, we point out that the procedure of transforming an equa-
tion of the form (3), where 9 is quadratic, first into the form (5) and then
into the form (7) is well-known. It is used, for example, in solving the time-
independent Schridinger equation for a harmonic oscillator.

Now, the general solution of (7) can be expressed in terms of the confluent
hypergeometric functions. In fact, we have the following result, which may be

verified by direct calculation or by referring to Slater [7].

LEMMA 4. Let yo and y1 denote the solutions of equation (7) that satisfy

EEE initial conditions




= ! =

¥o(0) =0, yi(0) =1

yl(O) =1, yi(O) = 0.
Then the functions Yo and y, are given by

= . o2
(8) yo(s) = s 1Fl(a +1/2, 3/2; s7),

TN
e )
e (g) = s

(9) ]Iﬂ’s—)-—.___i_lil_(a’ 1/2’ s )'

N ————
- — -

We now focus our attention on property (ii) in the statement of the Theorem.
The next result shows that, up to a multiplicative constant, there is only one

solution of (7) which, when substituted in (6), can possibly work.

LEMMA 5. Every non-trivial solution y = Yo + 1Y of equation (7) has the

property that y'(s)/y(s) » » as s » o unless the constants o and < satisfy

the relation

cor(a) + 2c1F(a + 1/2) = 0.

Proof. We apply two results about confluent hypergeometric functions given in

Slater [7]. We have the derivative relation

. - a .
1Fl(a, b; z) 1Fl(a+l, b+l; z)

o,
e
o

and the asymptotic expansion as z » o

r(b)

} -1
23 exp(2) 2P0z ).

1Fl(a, b; z) =

If we now set y = coyo + )Y, where cg + cf > 0 and apply these identities,

then after some simplification we obtain the results that as s » =,

oy = D2)exp(s%)s% T (a)
yois T(a)T(a*1/2) U 2

cos'2[1+0(s’2)] + cOT(a)[l+O(s_2)] +

2, T(a+1/2) [140(s ")},




2, 2a-1 _ _
y(s) = Pé}{(igl";’(‘zﬁ/;f Jeol@ [140(s™H)] + 2¢, T (a+1/2) [1+0(s )1}

Therefore, as s +» o» we have y'(s)/2sy(s) - 1, which implies y'(s)/y(s) » o,
unless the constants o and ¢ make this form indeterminate. But this is
precisely when cOF(a)_; 2c1F(a+1/2) = 0.

Now recall that the variables s and t are related by s = §(t+n),
where § > 0, so the conditions s » » and t +» » are equivalent. Then the
form (6) for v(t) shows that a solution that exists for large t will have
v(t) - 2¢1(t) > -0 as t -+ o unless <, and c1 satisfy the relation stated

in Lemma 5. Furthermore, the solution y of (7) enters into the form (6) only

—

through the ratio y'/y, so one of the constants c¢. and c, may be chosen

0
arbitrarily. Since we want to avoid solutions y that vanish, we choose c, = 1 ‘
and Cy = -2l'(a+1/2)/T(a). We summarize what we have obtained so far as follows. ‘

LEMMA 6. A necessary condition for a solution v of equation (1) to bhav» f

properties (i) and (ii) of the Theorem is that f

(10) v(t) = 2¢1(t) - gm

where y(s) = cyo(s) + yl(s) with ¢ = -2T'(a+1/2)/T(a) and yo.y1 are defined

Ez formulas (8) and (9), respectively.

Notice that (10) is the form (A) of the solution Vv_ that is given in the
remarks following the Theorem. We now proceed to show that the particular solu-

tion ¢ of (7) forces the corresponding solution v of (1) to have properties

(i) through (ix) of the Theorem.

LEMMA 7. EEP solution = Yo + Y, gf equation (7) satisfies the inequalities

. ————————————

g(s) >0 EEF p'(s) <0 ng gl} S.




T o

BR3¢ 2o

Proof. The major theoretical tool we need to prove this result is stated
in the Appendix. 1In order to apply that theorem to our problem, we put equation
(7) in self-adjoint form by multiplying both sides by exp(-sz). The result is
the equivalent equation

(ry')' - py =0,

where r(s) = exp(—sz) and p(s) = 4ar(s). Since r and p are continuous

with r(s) > 0 and p(s) > 0 for all s, we can conclude that if y = 6y0+yl
is the solution of (7) with © = lim_ - yl(s)/yo(s), then y(s) > 0 and
y'(s) < 0 for all S. We now show that 6 =g.

To do this, we proceed as in the proof, of Lemma 5. Using the definition of

Yo and Yy» and the asymptotic expansion of the confluent hypergeometric functions

again, we obtain, as s » o

y (o) = e )% (1v0(s7)

and yo(s) = E%%éé%%ijexp(sz)sza-l(1+0(s_2)).

This makes it clear that 0

-2l'(a+l/2)/T(a) = ¢ .
By referring to the form (10) and applying the result of Lemma 7, we

immediately have;

COROLLARY. 229 solution v gf equation (1) defined by (10) satisfies

properties (iii) and (iv) and, a fortiori, satisfies properties (i) and (ii).

In order to tackle properties (v) through (viii), we develop the second form

(B) of the solution .

LEMMA 8. The solution ¢ = cyo + Y1 of equation (7) can EE written in the

form

a
(11 v(e) = ELEUD 2%y (2,




is the Weber parabolic cylinder function with

| where z = s/2 = §/2(t+n) and Dp

i P = -2a = 8 /(B,~B))-

Proof. The result follows by using the definition of Dp and simplifying

) the right-hand side of (11).

LEMMA 9. The solution v of equation (1) defined by (10) can be written in

the form

D (2)
(12) v(t) = 20,(6) + §§Z-{§ﬁ%;;—
P

Proof. To obtain this form, first we use formula (11) for Y and calculate

V' /Y. Keeping in mind that z = s/2, we obtain

O SXOR
A D (z)
' P
Then we use the identity (cf. [4])
fAi (13) D;(z) = (z/Z)Dp(z) - Dp+1(z)' }
The result is that :
D_..(2) !
v'(s) _ _ p+l :
(14) O V2 b @

i Substitution of this expression into formula (10) and use of the relation

s = §(t+n) give the form (12) for v, which is the form (B) that was claimed.
Properties (v), (vi), and (vii) can now be attacked by using the following

asymptotic expansion of the parabolic cylinder functions (cf. [4]). As z » o,

e MO 3o -4 AT T Y TSI T AT

(15) D,(2) = exp(-27/4) 2P11 - B2 4 o(27%).
2z

; LEMMA 10. If y = tyg + Y then {(s) » of as s > »,

Proof. We return to formula (11) for y, keeping in mind the connection




10

z = s/2 and the fact that p = -2a ~ 0. Substitution of the result of (15) into
(11) yields, as s » o, N
a
(16) W(s) = 2 T(atl/2) Pl - p(p-1) + 0(2'4)]’
r(1/2) 222

so Y(s) »0 as s » w. Since P(s) > 0 for all s, the conclusion follows.

COROLLARY. The solution v Q£ equation (1) defined by (10) satisfies property (v).

—

Proof. Using the form (10) with the connection s = §(t+n) shows that if we

fix some EQ and let Sg be the corresponding value of s, then

S

)

1
W/ == =0 y(s)/u(s) .
0 0 o 0

(17) f£ w-20p = -2 f

t

But s > » as t -» «, 80 ft (v—2¢1) = o follows immediately from Lemma 10.

0

For the second integral, we again fix t0 and then apply property (iv) te an

interval [tO,t]. The result is

t , t
fto (v—2¢2) > fto (2¢1-2¢2)

2 .2
= (B,=B,) (t°=tg) + (y,=v,) (t-t,)

which > = as t -+ o, since 81 > 82.

LEMMA 11. If y = LYy * Y then ¢'(s)/y(s) » 0 as s » o,

Proof. We begin by using formula (14), recalling again that z = s/2. The

result is

' D (z)
V' (s) _ Pl "
v(s) Y2z Dp(z) ].

But z > ©» as s > o, and if we use just the result

D, (2) = exp(-22/4) 2P(1 + 0(z~%))




e e+ e e e —— e e - . . ey
N .

1 ' 11

? from formula (15), we obtain

Do+1(2) P 10D | 206H
7D (2) %" 7 -2 . =2
P z [1 +0(z )] 1 +0(z )

which approaches zero as z -» w.

COROLLARY. The solution v of equation (1) defined by (10) satisfies property

— ——— e —

(vi).
The asymptotic expansion (15) can be used again to establish property (vii).

First, we isolate the most important calculation that is involved.

LEMMA 12. The following limit relation holds for the parabolic cylinder

functions:

A D .\,
*‘l <__]p)i—_l_> (z) » 1 as Z > o,
P

Proof. After using the quotient rule to calculate the indicated derivative,

we use in turn the identity (13) and its companion (cf. [4]) 1

DL (2) = (1D (2) = (2/2)D (2. g

The result is

D 1]
(18) <—%ii> (z) = (p+l) +<E%il>2(z) - z<ég+l>(z).
p P p

I1f we apply (15) and do some re-shuffling of factors, we find that

D 2 D - 2 ‘4 -
(.Eii) (z) - 2 “%il (2) =[l p(p+l)/2z°+0(z )] [-p + z 0(z 4)],

Pp p [1-p (p~1) /22240 (z™%) ]

H
§)
¥

o -t

which approaches -~p as 2z + o. The conclusion then follows immediately.

COROLLARY. The solution v of equation (1) defined by (10) satisfies

property (vii).




Proof. If we look at the form (12) of the solution, we obtain

D

LAY
vI(E) = 205(0) + %?(—’11> (2) £
p

2/D
67 pr1 Y’
282 + 2 E—< Dp > (z),

since =z = 6/7(t+n). But z > as t =+ ©, g0 Lemma 12 implies that

2
v'(t) » 28, + 2 s as t >
2 o :

Using the definition & = /a(Bl—Bz) then gives the result.

Next, we use the following result about the parabolic cylinder functions.

LEMMA 13. If B, <0 <B; and p=8/(B,-B), then:

(i) Dp(z) >0 £2F él} z;

(ii) Dp+

.

1 has exactly one real zero zgs and Dp+1(z) > 0 exactly when

z > zo.
Proof. The hypotheses imply that O < p+l < 1. Hence, the result follows

immediately (cf. [1]).

COROLLARY. The solution v of equation (1) defined Ey (10) satisfies

property (viii).

Proof. 1If we apply Lemma 13 to the form (12) of the solution, we see that

v(t) -~ 2¢2(t) >0 for t >t

and v(to) - 2®2(t0) =0

exactly when t satisfies zg = 6/7(t0+n). A simple calculation using the

S

definitions of ¢1, ¢2, § and n then gives the result.

!
v
i
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] LEMMA 14. The functions 51 defined in (ix) are related by

:_ 1 (19) ,(t) = G(t) &, (0),
yhere G(t) = exp(sh - s°) with s = §(t+n) and sy = 8(tgn).

Proof. Since xi(t) = u[v(t)—2¢i(t)], we have xz(t) = xl(t) + 262(t+n),
from which (19) follows easily.

COROLLARY. The functions &, satisfy (ixa).

Proof. Since t satisfies (viii), we have

0
which is negative because the zero z0 of Dp+1(z) with 0 < p+l1 < 1 s

negative (cf. [1]). Hence, t0+n < 0 since Bl > 82, so s < 0. Therefore,

G(t) > 1 exactly when SO < g < ~Sq» i.e., when to <t < —to - 2n.

LEMMA 15. The solution = g *+ V3 of equation (7) has yY"(s) >0

n
=}
~

all s.

» ; Proof. If there were a value s, at which W"(sl) = 0, then by taking
the derivative with respect to s of both sides of (7) with y replaced by

% Y, we would have w"'(sl) = (2+Aa)w'(sl). Since just the hypotheses 82 < Bl

and Bl >0 dimply a > 0, and Lemma 7 implies w'(sl) < 0, it follows that ;

w"'(sl) < 0. This says that at Sys P changes from being convex to concave, i

and hence, by this very argument, can never change back to being convex. But

that contradicts the result of Lemma 7. So, y'"(s) is never zero. But, by

replacing s by 0 in (7), we have ¢"(0) = 4a > 0. Since y" is continuous,

S

the result follows.

COROLLARY. The function fl satisfies (ixb).

.t et m——— e

Proof. Since property (iv) implies xl(t) >0 for all t, it follows

from the definition of fl that fl(t) >0 for all g. To show that fl is




decreasing, notice that form (A) of the solution to equation (1)
implies that x (t) = -8Y"(s)/h(s) = o U(s).

Hence, we have

(20) 3,(t) = v(s)NU(sy) s

where, as in Lemma 14, s = §(t+n) and s, = 6(t0+n). But then

0
fl(t) = -5i(t) = —dw'(s)/w(so), so fi(t) = -GZW"(S)/w(so) < 0 by Lemmas

7 and 15.

LEMMA 16. The function f2 satisfies (ixc).

Proof. That Ez(t) >0 for t > to and f2(t0) = 0 follows from the
definition of f2 and (viii). Next, we show that fz(t) +0 as t > o,
For, the definition of f2 and relation (19) imply f2 = -5% = —(G@l)'. Using

(20) then gives

(21) £,(t) = §G(£)d,(t)[2s - ' (s)/U(s)].
Since t > to corresponds to s > Sg° (20) and Lemma 7 imply
(22) 0 < (bl(t) <1 for t > to

Also, ¢'(s)/Y(s) >0 as t >« by Lemma 11. Finally, 2sG(t) >0 as t + @

by the definition of E& Hence, f2 is a continuous function with fz(t) >0

on (to,oo) while fz(to) =0 =f2(°°), S0 f2 has an absolute maximum in (to,oo).

To facilitate the calculation of fé, we first use (14) and (19) to re-write

(21) as
(23) £,(t) =8 éz(t) Dp+1(z)/Dp(z).

with z = /25(t+n) as before. Taking the derivative of both sides of (23)

with respect to L and using (18) as well as 55 = -f2, we find that

£ (8) = 2678, (e)[p+1 - 2D, (/D (2)].

VS SR,
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Since t > to corresponds to z > zq where zq is the (negative) zero of

] .
Dp+1(z), it follows from Lemma 13 that f2 (t) >0 for zq <z <0, i.e.,

to <t € -n. Hence, the maximum of f2 occurs at some tl > -n.
In order to deal with (ixd) and (ixe), we use fi = -5; and integration
by parts to get
t _ - t
(24) Loni(T)dT =ty - td (e) + fto $, (Ddr.

Then (19) and (22) easily yield

LEMMA 17. The function f2 satisfies (ixd).

Finally, (20) and the asymptotic expansion expansion (16) for  show
that 51(t) behaves like tP as ¢t » ©, where p = Bl/(BZ_Bl)' Since

82 <0< 81 implies that -1 < p < 0, it follows readily from (24) that

LEMMA 18. The function f satisfies (ixe).

—_ 1

4. An application to a noisy duel problem. In (3] and [6] appears a
dynamic programming approach to the m vs. n equal-accuracy noisy duel
problem, where the positive integers m < n represent the units of ammunition
the two players have. The approach begins by allowing either of the players
to fire a unit of ammunition only at times corresponding to points of a discrete
grid of the interval [0,1], which is interpreted as the interval of probabilities
of either player destroying the other if a unit is fired. This produces a
finite sequence of simultaneous games whose 2 x 2 pay-off matrices are deter-
mined by proceeding backwards inductively from the game where the probability
of destruction is unity.

Attention is focussed on an interval of grid points at which the players
have no pure strategy and which surrounds the critical probability 1/(m+n).

It is found, under suitable hypotheses suggested by computer implementation




of the above approach, that the value of the game in this interval of grid
points satisfies a difference equation. Dividing both sides of this equation
by an appropriate normalization factor and letting the mesh of the grid on
[0,1] approach zero leads to a normalized value v = v of the game that

m,n

satisfies a Riccati equation of the form (1) on the interval [-1,«), with
2
a - (mn)” (mn-2) / (n-m),

(’,] = mcm?n/(m-kn-l) . 82 = (—n/m)Bl,

c
= (m+n-1) . m,n . - -
= 2 (m+n) Cmon-1 Vm,n-l( 1) for 1 <m<n-l,
while Y, = 0 for m=n -1,
(m+n-1) __ “m,n
Y2 T 2 (m+n) Co-1.n * m-l,n(-l) for 1 <m< -1,

while Y2 =0 for m=1.

Here, it is known that the constants ¢ i are positive for i < j, but
Hd

Q griove.
analytic expressions for these constants are not known, However, the hypotheses
o >0 and Bz < 0 < 81 are evidently satisfied. Also, it is established in
[3] and [6] that the initial condition v(to) - 2¢2(t0) = 0 1is to hold when
t

o™ -1. But this does not seem to be enough information to attack the

existence and uniqueness problem for (1) on [-1,»),

Instead, attention is turned to the functions defined in (ix) with to = -1,
which corresponds in the normalization process to the beginning of the interval
surrounding probability 1/{(mtn) in which random strategies are to be employed.

The functions $l(t) and 52(t) represent, respectively, the probability

that the weaker player and the stronger player has a normalized time of first

fire occurring at or after t. The functions xi(t) represent the corresponding




)

hazard rates for the cdf's ¢i(t)

1—5i(t) and the functions fi(t) repre-

sent their densities.
One of the facts derived in [3] and [6] is that the weaker player's

hazard rate xl(t) is to be positive for t > -1. Somewhat surprisingly, the

assumption that the solution of (1) exists for large _t and that xl(t) be
positive for large t produces not only the global existence and uniqueness
result for (1) proved herein, but also some properties of the complements
Ei(t) of the cdf's @i(t) that could not be surmised by studying the computer

runs for the 2 X 2 games, namely:
Property (v) implies that

“x.()dt =® for i = 1,2,
~171

so that lim 3, (t) = exp (-], x, @)dT = 0,
i -1%4
t+c0
which implies lim ¢i(t) = 1.
to0

This says that the probability is unity that each player fires at some time

in the normalized interval -1 < t < ® during which random strategies are

employed.
Property (ixa) states that the probability is greater not only for the

weaker player firing before the stronger one for normalized times near tO = -1,

but also for the weaker player firing after the stronger one for large t.

Properties (ixb) and (ixc) combine to show that the mode of fl occurs

at to = -] while that of f2 occurs at a value of t greater than that at

which the two players' hazard rates are equal, which is in turn greater than

w—rhee 4 n

-1,

Properties (ixd) and (ixe) state that the expectation of ¢2 is finite

while that of 01 is infinite.

P —— - R T— A C o~ <o TR P goag = Y T T -




Finally, information about the constants e j and the initial values
H]

5 vy j(—1) tor i < j can be obtained by means of a complicated recursive

process. First, the above-mentioned fact that Vo n(—l)—ZcbZ(—l) = (0 yields,

from the formulas for «, 61, 82, Yy» and Yo

1y - __2n 2, (mn-1)  Sm,n _ _

T Gy Cmn Y @ g Vel L <m <
and v (-1) = 2¢ 2 .
i,n 1,n

Then, this relation coupled with the fact from [3] and [6] that

v n(t) - 2¢2(t) >0 for t > -1 implies, by property (viii), that

$1(-1) = 9y-1) =z /(B -B,) /2,

where z, a is the zero of the Weber parabolic cylinder function Dp+1, with
p = -m/(m+n). Solving this relation for Cmon’ using the fact that Cnon > 0,
gives
“m,n T "zm,nAm,n'+ Bm,n
3 1/2
where Am n s [ (n-m) (m+n-1) /2 (m+n) "~ (m+n-2) ]
1y v (1) A\ (-1)
and B = (m+n 1% [ =22 L .t 33 )] for 1<m< n-l
’ 2 (m+n) m,n-1 ‘m-1,n
while for n > 2,
B - n . Vl,n-1(~1) - n c
1,n 2 (n+1) cl,n—l (n+1) "1,n-1
_ (n=1) vn—2,n(—1)
and B = - .
n-1,n 2n-1 c i
n-2,n
and lastly that B = (.

1,2

b




Thus, we have ¢ = -2y 2//57 at the beginning of the recursive chain.

1,2

Next, we find that cl,n = —zl,nAl,n'+ Bl,n

! expresses ¢, in terms of ¢y for n > 2. Hence, the formula
,N ,n-1

vy n(—1) = 2c12n determines these initial values in a simple recursive way.
It is clear then that the values ¢ and v (-1) can eventually be

m,n m,n
calculated in terms of m,n and the zeroes zm,n’ but simple formulas for
those values are not apparent.

Thus, it is indeed fortunate thz. the analysis presented here that is
germane to the noisy duel problem doe. not depend on specific information
about the coefficients in (1) be;und the hypotheses of the Theorem. That

lack of information is compensated for by the condition that properties (i)

and (ii) are to hold.
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Appendix. The proof of Lemma 7 depends on the following results, which can

be derived by straightforward modifications of the argument given in section 9.2

of Hille [2].

THEOREM. Suppose Y iﬂg p are continuous functions such that r(s) >0

329 p(s) >0 for s real. Let Yo and vy be the solutions of

(Al) (ry')' - py =0

that satisfy the initial conditions

y5(0) =0, y3(0) =1
2nd y 0y =1, yj(0) = 0.
Then: (a) The limits
] y(s)
6 = Um T Y (&
0
y;(s)
= lim N
H s> yy(s)

exist, and 6 < u.

(b) IEE solutions of (Al) passing through the point (0,l) ghar have

y(s) >0 229 y'(s) <0 for s> 0 are precisely those solutions vy = Ay0+yl

that have 9 < A < u. Moreover, every such solution satisfies:

(b)) y(s) >0 and y'(s) <0 for all real s.

(® y'(s) < 0 over any interval on which p(s) does not vanish

2)

1dent1ca11y.

(¢) 08 =y exactly when

[y g + oy’ = =,

a sufficient condition for which is the divergence of {: % .
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